The Liouville–Neumann expansion in singular eigenvalue problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Positive Solutions for Singular Eigenvalue Problems

In this paper, we discuss the existence, nonexistence, and multiplicity of positive solutions for a class of singular eigenvalue problems. Some of our theorems are new, while others extend earlier results obtained by Zhang and Kong [12]. The interesting point is that the authors obtain the relation between the existence of solutions and the parameter λ. The arguments are based on the fixed poin...

متن کامل

Singular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations

We consider linear differential equations of the form (p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A) on an infinite interval [a,∞) and study the problem of finding those values of λ for which (A) has principal solutions x0(t;λ) vanishing at t = a. This problem may well be called a singular eigenvalue problem, since requiring x0(t;λ) to be a principal solution can be considered as a boundary co...

متن کامل

Multigrid Methods for Nearly Singular Linear Equations and Eigenvalue Problems

The purpose of this paper is to develop a convergence theory for multigrid methods applied to nearly singular linear elliptic partial differential equations of the type produced from a positive definite system by a shift with the identity. One of the important aspects of this theory is that it allows such shifts to vary anywhere in the multigrid scheme, enabling its application to a wider class...

متن کامل

A Smallest Singular Value Method for Solving Inverse Eigenvalue Problems

Utilizing the properties of the smallest singular value of a matrix, we propose a new, efficient and reliable algorithm for solving nonsymmetric matrix inverse eigenvalue problems, and compare it with a known method. We also present numerical experiments which illustrate our results.

متن کامل

Asymptotic Expansion of Solutions to Nonlinear Elliptic Eigenvalue Problems

We consider the nonlinear eigenvalue problem −∆u+ g(u) = λ sinu in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 2) is an appropriately smooth bounded domain and λ > 0 is a parameter. It is known that if λ 1, then the corresponding solution uλ is almost flat and almost equal to π inside Ω. We establish an asymptotic expansion of uλ(x) (x ∈ Ω) when λ 1, which is explicitly represented by g.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2012

ISSN: 0893-9659

DOI: 10.1016/j.aml.2011.07.011